Lecture 14 Fluid Properties

- A rectangular plate 3 metres long and 1 metre wide is immersed vertically in water in such a way that its 3 metres side is parallel to the water surface and is 1 metre below it. Find: (i) Total pressure on the plate, and (ii) Position of centre of pressure.

Solution. Width of the plane surface, $b=3 \mathrm{~m}$
Depth of the plane surface, $d=1 \mathrm{~m}$
Area of the plane surface,

$$
\begin{aligned}
A & =b \times d=3 \times 1=3 \mathrm{~m}^{2} \\
x & =1+\frac{1}{2}=1.5 \mathrm{~m}
\end{aligned}
$$

(i) Total pressure P :

Using the relation:

$$
\begin{aligned}
P & =w A x=9.81 \times 3 \times 1.5 \\
& =44.14 \mathrm{kN}(\text { Ans. })
\end{aligned}
$$

(ii) Centre of pressure, \bar{h} :

Using the relation:

$$
\bar{h}=\frac{I_{G}}{A \bar{x}}+\bar{x}
$$

Free water surface

But,

$$
\begin{aligned}
I_{G} & =\frac{b d^{3}}{12}=\frac{3 \times 1^{3}}{12}=0.25 \mathrm{~m}^{4} \\
\bar{h} & =\frac{0.25}{3 \times 1.5} \div 1.5=1.556 \mathrm{~m} \\
\bar{h} & =1.556 \mathrm{~m} \text { (Ans.) }
\end{aligned}
$$

Fluid Properties

- A circular opening, 2.5 m diameter, in a vertical side of tank is closed by a disc of 2.5 m diameter which can rotate about a horizontal diameter. Determine: (i) The force on the disc; (ii) The torque required to maintain the disc in equilibrium in vertical position when the head of water above horizontal diameter is 3.5 m .

Solution. Diameter of the opening, $d=2.5 \mathrm{~m}$
\therefore Area of the opening,

$$
A=\frac{\pi}{4} d^{2}=\frac{\pi}{4} \times 2.5^{2}=4.91 \mathrm{~m}^{2}
$$

Depth of C.G.,

$$
\bar{x}=3.5 \mathrm{~m}
$$

(i) Force on the disc, P :

Using the relation:

$$
\begin{aligned}
P & =w A \bar{x}=9.81 \times 4.91 \times 3.5 \\
& =168.6 \mathrm{kN} \text { (Ans.) }
\end{aligned}
$$

(ii) Torque required, T :

In order to determine the torque (1) required to maintain the disc in equilibrium, let us first alculate the point of application of force acting on the disc, i.e centre of pressure of the force P. The depth of centre of pressure (\bar{h}) is given by the relation:

$$
\begin{aligned}
\bar{h} & =\frac{I_{G}}{A \bar{x}}+\bar{x}=\frac{\left(\pi / 64 \times d^{4}\right)}{\left(\pi / 4 \times d^{2}\right) \bar{x}}+\bar{x} \quad\left[\because I_{G}=\frac{\pi}{64} \times d^{4}\right] \\
& =\frac{\left(\pi / 64 \times 2.5^{4}\right)}{\left(\pi / 4 \times 2.5^{2}\right) \times 3.5}+3.5=3.61 \mathrm{~m}
\end{aligned}
$$

i.e., the force P is acting at a distance of 3.61 m from the free surface Moment of this force ibout horizontal diameter $X-X$

$$
\begin{aligned}
& =P(\bar{h}-\vec{x})=168.6(3.61-3.5) \\
& =18.55 \mathrm{kNm} .
\end{aligned}
$$

(anticlockwise)

Fluid Properties

- A square aperture in the vertical side of a tank has one diagonal vertical and is completely covered by a plane plate hinged along one of the upper sides of the aperture. The diagonals of the aperture are 2.4 m long and the tank contains a liquid of specific gravity 1.2. The centre of aperture is 1.8 m below the free surface. Calculate: (i) The thrust exerted on the plate by the liquid; (ii) The position of its centre of pressure.

Fluid Properties

Solution. Refer to Fig.
Diagonal of aperture, $\mathrm{PR}=\mathrm{QS}=2.4 \mathrm{~m}$
Area of square aperture, $A=$ area of $\triangle P Q R+$ area of $\triangle P S R$.

$$
\begin{aligned}
& =\frac{1}{2} P R \times O Q+\frac{1}{2} P R \times O S \\
& =\frac{1}{2} \times 2.4 \times\left(\frac{2.4}{2}\right)+\frac{1}{2} \times 2.4 \times\left(\frac{2.4}{2}\right)=2.88 \mathrm{~m}^{2}
\end{aligned}
$$

Depth of centre of aperture plate from free liquid surface, $\bar{x}=1.8 \mathrm{~m}$
(i) Thrust exerted on the plate P :

Pressure force or thrust on the plate,

$$
P=w A \bar{x}=(1.2 \times 9.81) \times 2.88 \times 1.8=61.026 \mathrm{kN} \text { (Ans.) }
$$

(ii) The position of its centre of pressure, \bar{h};

Centre of pressure is given by the relation:
where,

$$
\bar{h}=\frac{I_{G}}{A \bar{x}}+\bar{x}
$$

$$
\begin{aligned}
I_{G} & =\text { M. O. I of } P Q R S \text { about diagonal } P R \\
& =\text { M.O.I of } \triangle P Q R+\text { M.O.I of } P S R \ldots \text { about PR } \\
& =\frac{2.4 \times(1.2)^{3}}{12}+\frac{2.4 \times(1.2)^{3}}{12}=0.6912 \mathrm{~m}^{4} \quad(\because O Q=O S)
\end{aligned}
$$

[\because The M.O.I of a triangle about its base equals $\frac{\text { base } \times(\text { height })^{3}}{12}$]

$$
\therefore \quad \bar{h}=\frac{0.6912}{2.88 \times 1.8}+1.8=1.933 \mathrm{~m}(\text { Ans. })
$$

Fluid Properties

- A sliding gate 3 m wide and 1.5 m high lies on a vertical plane and has a coefficient of friction of 0.2 between itself and guides. If the gate weighs 30 kN , find the vertical force required to raise the gate if its upper edge is at a depth of 9 m from free surface of water.
- Solution. Width of the gate, $b=3 \mathrm{~m}$ Depth/height of the gate,
- $d=1.5 \mathrm{~m}$ Area of the gate, $A=b \times d=3 \times 1.5=4.5 \mathrm{~m} 2$ Weight of the gate, $W=30 \mathrm{kN}$ Co-efficient of friction, $\mu=0.2$

Vertical force required to raise the gate:
Depth of c.g. of the gate fromwater surface,

$$
\bar{x}=9+\frac{1.5}{2}=9.75 \mathrm{~m}
$$

Pressure force on the gate,

$$
P=w A \bar{x}=9.81 \times 4.5 \times 9.75=430.4 \mathrm{kN}
$$

Force required to raise the gate
$=$ Frictional force + weight of the gate
$=\mu P+W$
$=0.2 \times 430.4+30$
$=116.08 \mathrm{kN}$ (Ans.)

Fluid Properties

- An opening in a dam is covered by the use of a vertical sluice gate. The opening is 2 m wide and 1.2 m high. On the upstream of the gate the liquid of specific gravity 1.45 lies upto a height of 1.5 m above the top of the gate, whereas on the downstream side the water is available upto a height touching the top of the gate. Find:(i) The resultant force acting on the gate and position of centre of pressure;
(ii) The force acting horizontally at the top of the gate which is capable of opening it. Assume that the gate is hinged at the bottom.
- Solution. Width of the gate, $b=2 \mathrm{~m}$
- Depth of the gate, $\mathrm{d}=1.2 \mathrm{~m}$
- Area, $A=b \times d=2 \times 1.2=2.4 \mathrm{~m} 2$
- \quad Specific gravity of liquid $=1.45$
- Let, P1 = Force exerted by the liquid of sp. gravity 1.45 on the gate, and
- \quad P2 = Force exerted by water on the gate.
- (i) Resultant force, P :
- Position of centre of pressure of resultant force:
- We know that, P1 = wA $-x_{1}$ bar
- \quad where, $w=9.81 \times 1.45=14.22 \mathrm{kN} / \mathrm{m} 3$,
- $A=2 \times 1.2=2.4 \mathrm{~m} 2$

$$
\begin{aligned}
\bar{x}_{1} & =1.5+\frac{1.2}{2}=2.1 \mathrm{~m} \\
P_{1} & =14.22 \times 2.4 \times 2.1=71.67 \mathrm{kN} . \\
P_{2} & =w A \bar{x}_{2} \\
w & =9.81 \mathrm{kN} / \mathrm{m}^{3} . \\
A & =2.4 \mathrm{~m}^{2} \\
\bar{x}_{2} & =\frac{1.2}{2}=0.6 \mathrm{~m} \\
P_{2} & =9.81 \times 2.4 \times 0.6=14.13 \mathrm{kN} . \\
P & =P_{1}-P_{2}=71.67-14.13 \\
& =57.54 \mathrm{kN} \text { (Ans. })
\end{aligned}
$$

Hinge

Liquid
($\mathrm{S}=1.45$)

