FACULTY OF ENGINEERING \& TECHNOLOGY

CSPS-106 Computer Organization

Lecture-09

Mr. Dilip Kumar J Saini
Assistant Professor
Computer Science \& Engineering

OUTLINE

>ARITHMETIC \& LOGIC UNIT
>ALU INPUTS AND OUTPUTS
>INTEGER REPRESENTATION
>SIGN-MAGNITUDE
>GEOMETRIC DEPICTION OF TWOS COMPLEMENT INTEGERS
>NEGATION SPECIAL CASE

ARITHMETIC \& LOGIC UNIT

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU (maths co-processor)
- May be on chip separate FPU (486DX +)

ALU INPUTS AND OUTPUTS

INTEGER REPRESENTATION

- Only have 0 \& 1 to represent everything
- Positive numbers stored in binary
- e.g. 41=00101001
- No minus sign
- No period
- Sign-Magnitude
- Two's compliment

SIGN-MAGNITUDE

- Left most bit is sign bit
- 0 means positive
- 1 means negative
- $\quad+18=00010010$
- $-18=10010010$
- Problems
- Need to consider both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

TWO'S COMPLIMENT

- $\quad+3=00000011$
- $\quad+2=00000010$
- $\quad+1=00000001$
- $\quad+0=00000000$
- $\quad-1=11111111$
- $-2=11111110$
- $-3=11111101$

BENEFITS

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
$-\quad 3=00000011$
- Boolean complement gives 11111100
- Add 1 to LSB 11111101

GEOMETRIC DEPICTION OF TWOS COMPLEMENT INTEGERS

(a) 4-bit numbers

(b) n-bit numbers

NEGATION SPECIAL CASE 1

- $0=$

00000000

- Bitwise not 11111111
- Add 1 to LSB +1
- Result 100000000
- Overflow is ignored, so:
- $-0=0 \sqrt{ }$

NEGATION SPECIAL CASE 2

- $-128=10000000$
- bitwise not 01111111
- Add 1 to LSB +1
- Result 10000000
- So:
- $-(-128)=-128 \quad X$
- Monitor MSB (sign bit)
- It should change during negation

Multiple Choice Question

MUTIPLE CHOICE QUESTIONS:

Sr no	Question	Option A	Option B	OptionC	OptionD
1	For the addition of large integers, most of the systems make use of \qquad	Fast adders	Full adders	Carry look-ahead adders	None of the mentioned
2	In a normal n-bit adder, to find out if an overflow as occurred we make use of \qquad	And gate	Nand gate	Nor gate	Xor gate
3	In the implementation of a Multiplier circuit in the system we make use of \qquad	Counter	Flip flop	Shift register	Push down stack
4	When 1101 is used to divide 100010010 the remainder is	11	10	1	1
5	Which error detection arithmetic?	Simple parity check	Two-dimensional parity check	CRC	Checksum

REFERENCES

-http://www.engppt.com/search/label/Computer\ Organization\ and\ Architecture
-http://www.engppt.com/search/label/Computer\ Architecture\ ppt

