

FACULTY OF ENGINEERING & TECHNOLOGY

CSPS-106 Computer Organization

Lecture-09

Mr. Dilip Kumar J Saini

Assistant Professor Computer Science & Engineering

>ARITHMETIC & LOGIC UNIT

>ALU INPUTS AND OUTPUTS

>INTEGER REPRESENTATION

≻SIGN-MAGNITUDE

>GEOMETRIC DEPICTION OF TWOS COMPLEMENT INTEGERS

>NEGATION SPECIAL CASE

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU (maths co-processor)
- May be on chip separate FPU (486DX +)

INTEGER REPRESENTATION

- Only have 0 & 1 to represent everything
- Positive numbers stored in binary
 - e.g. 41=00101001
- No minus sign
- No period
- Sign-Magnitude
- Two's compliment

- Left most bit is sign bit
- 0 means positive
- 1 means negative
- +18 = 00010010
- -18 = 10010010
- Problems

- Need to consider both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

- +3 = 00000011
- +2 = 00000010
- +1 = 00000001
- +0 = 00000000
- -1 = 11111111
- -2 = 11111110
- -3 = 11111101

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
 - 3 = 00000011
 - Boolean complement gives 11111100
 - Add 1 to LSB

GEOMETRIC DEPICTION OF TWOS COMPLEMENT INTEGERS

- 0 = 0000000
- Bitwise not 11111111
- Add 1 to LSB +1
- Result 1 0000000
- Overflow is ignored, so:
- $-0 = 0 \sqrt{}$

- -128 = 1000000
- bitwise not 01111111
- Add 1 to LSB +1
- Result 1000000
- So:
- -(-128) = -128 X
- Monitor MSB (sign bit)
- It should change during negation

MUTIPLE CHOICE QUESTIONS:

Sr no	Question	Option A	Option B	OptionC	OptionD
				Carry look-ahead	
1	For the addition of large integers, most of the systems make use of	Fast adders	Full adders	adders	None of the mentioned
	In a normal n-bit adder, to find out if an overflow as	And gate	Nand gate	Nor gate	
2	occurred we make use of	MA			Xor gate
3	In the implementation of a Multiplier circuit in the system we make use of	Counter	Flip flop	Shift register	Push down stack
4	When 1101 is used to divide 100010010 the remainder is	11	10	1	1
	which error detection				
		Simple parity		0.00	
5	arithmetic?	check	parity check	CRC	Checksum

- http://www.engppt.com/search/label/Computer%20Organization%20and%20Architecture
- http://www.engppt.com/search/label/Computer%20Architecture%20ppt

